Actions of amylin on subfornical organ neurons and on drinking behavior in rats.
نویسندگان
چکیده
Amylin, a peptide hormone secreted by pancreatic β-cells after food intake, contributes to metabolic control by regulating nutrient influx into the blood, whereas insulin promotes nutrient efflux and storage. We now report that amylin activates neurons in the subfornical organ (SFO), a structure in which the lack of a functional blood-brain barrier and the presence of a high density of amylin receptors may render it accessible and sensitive to circulating amylin. In an in vitro slice preparation of the rat SFO, 73% of 78 neurons were excited by superfusion with rat amylin (10-8-10-7M); the remainder were insensitive. The threshold concentration for the excitatory response of amylin was <10-8 M and thus similar in potency to a previously reported excitatory effect of ANG II on the same neurons. The excitatory effect of amylin was completely blocked by coapplication of the selective amylin receptor antagonist AC-187 (10-6-10-5M) but was not affected by losartan (10-5 M). Subcutaneous injections of 40 nmol of amylin significantly increased water intake in euhydrated rats, as did an equimolar dose of ANG II, which is a well-described SFO-mediated effect of circulating ANG II. These results point to the SFO as a sensory central nervous target for amylin released systemically in response to metabolic changes. Furthermore, we suggest that amylin release during food intake may stimulate prandial drinking.
منابع مشابه
Acute electrical stimulation of the subfornical organ induces feeding in satiated rats.
The SFO, a circumventricular organ (CVO) that lacks the normal blood-brain barrier, is an important site in central autonomic regulation. A role for the SFO in sensing circulating satiety signals has been suggested by electrophysiological studies demonstrating that the anorexigenic satiety signals, leptin and amylin, as well as the orexigenic satiety signal, ghrelin, influence the excitability ...
متن کاملAmylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP.
Amylin is secreted with insulin from the pancreas during and after food intake. One of the most potent actions of amylin in vivo is its anorectic effect, which is directly mediated by the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. As we recently demonstrated, amylin also stimulates water intake most likely via its excitatory action on subfornical org...
متن کاملThe subfornical organ: a central target for circulating feeding signals.
The mechanisms through which circulating ghrelin relays hunger signals to the CNS are not yet fully understood. In this study, we have examined the potential role of the subfornical organ (SFO), a circumventricular structure that lacks the normal blood-brain barrier, as a CNS site in which ghrelin acts to influence the hypothalamic centers controlling food intake. We report that ghrelin increas...
متن کاملCirculating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat.
Relaxin, a peptide hormone secreted by the corpus luteum during pregnancy, exerts actions on reproductive tissues such as the pubic symphysis, uterus, and cervix. It may also influence body fluid balance by actions on the brain to stimulate thirst and vasopressin secretion. We mapped the sites in the brain that are activated by i.v. infusion of a dipsogenic dose of relaxin (25 microg/h) by immu...
متن کاملThe Subfornical Organ: A CNS Site for Actions of Circulating Leptin
Adipose tissue plays a critical role in energy homeostasis, secreting adipokines that control feeding, thermogenesis and neuroendocrine function. Leptin is the prototypic adipokine that acts centrally to signal long term energy balance. Whilst hypothalamic and brainstem nuclei are well-established sites of action of leptin, we tested the hypothesis that leptin signaling occurs in the subfornica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 276 2 Pt 2 شماره
صفحات -
تاریخ انتشار 1999